Embedding Intuitionistic into Classical Logic

نویسندگان

چکیده

The famous double negation translation [16, 17] establishes an embedding of classical into intuitionistic logic. Curiously, the reverse direction has not been covered in literature. Utilizing a normal form for logic [20], we establish small model property propositional We use this direct encoding Kripke semantics and quantified Boolean formulae. Next, transfer developed techniques to first order case provide first-order first-order-logic. Our goal here is that facilitates state-of-the-art provers deter- mining validity. In experimental evaluation, show our approach can compete with certain classes benchmarks, particular when content low. further note constructions support counter-models validity, which desired feature checking applications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deciding Intuitionistic Propositional Logic via Translation into Classical Logic

W. McCune, ed. 14 International Conference on Automated Deduction (CADE-14), LNAI 1249, pp. 131–145, c ©Springer Verlag, 1997. Abstract. We present a technique that efficiently translates propositional intuitionistic formulas into propositional classical formulas. This technique allows the use of arbitrary classical theorem provers for deciding the intuitionistic validity of a given proposition...

متن کامل

Intuitionistic Logic with Classical Atoms

In this paper, we define a Hilbert-style axiom system IPCCA that conservatively extends intuitionistic propositional logic (IPC) by adding new classical atoms for which the law of excluded middle (LEM) holds. We establish completeness of IPCCA with respect to an appropriate class of Kripke models. We show that IPCCA is a conservative extension of both classical propositional logic (CPC) and als...

متن کامل

Sweet SIXTEEN : Automation via Embedding into Classical Higher-Order Logic

Introduction. Classical logics are based on the bivalence principle, that is, the set of truth-values V has cardinality |V | = 2, usually with V = {T,F} where T and F stand for truthhood and falsity, respectively. Many-valued logics generalize this requirement to more or less arbitrary sets of truth-values, rather referred to as truth-degrees in that context. Popular examples of many-valued log...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EPiC series in computing

سال: 2023

ISSN: ['2398-7340']

DOI: https://doi.org/10.29007/b294